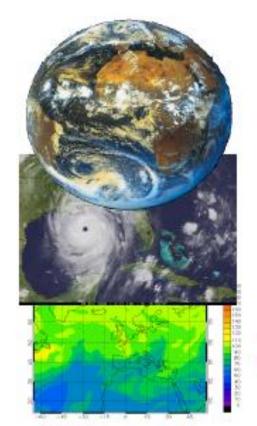
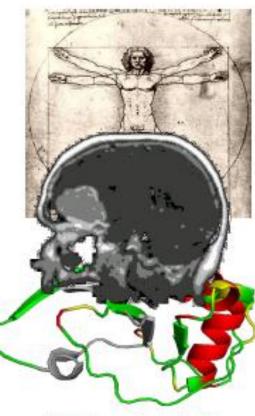


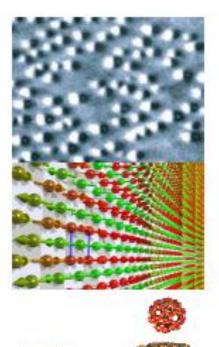
E-Fiscal Summer Workshop - 3-4 July 2012
The PRACE High Performance Computing infrastructure, Cost aspects
and sustainability perspectives

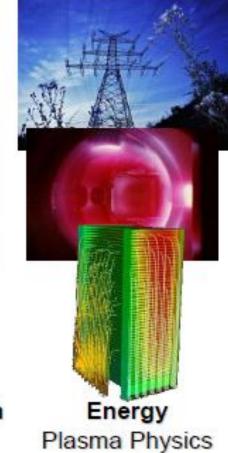
Annaïg Le Guen – GENCI Grand équipement national de calcul intensif - France


PRACE

The Partnership for Advance Computing in Europe is *the* European HPC Research Infrastructure


- PRACE enables world-class science through large scale simulations
- PRACE provides HPC services on leading edge capability systems on a diverse set of architectures
- PRACE operates up to six Tier-0 systems as a single entity including user and application support
 - International non-for-profit Association with seat in Brussels; 24 members
 - Systems funded by hosting members with 100 Million € / 5 years each
 - Currently France, Germany, Italy, Spain
- PRACE offers its resources through a single pan-European peer review process
 - Governed by an independent Scientific Steering Committee


Supercomputing Drives Science through Simulation


Environment
Weather/ Climatology
Pollution / Ozone Hole

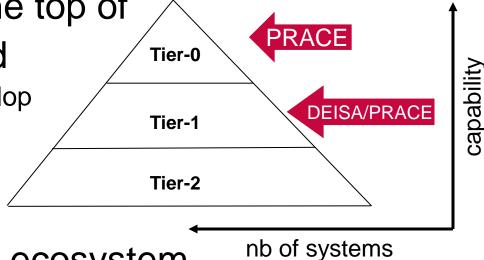
Ageing Society
Medicine
Biology

Materials/ Inf. Tech Spintronics Nano-science

Fuel Cells

HPC on ESFRI Roadmap 2006

- First comprehensive definition of RIs at European level
- RIs are major pillars of the European Research Area
- A European HPC service
 - strategic competitiveness
 - attractiveness for researchers
 - access based on excellence
 - supporting industrial development


The ESFRI Vision for a European HPC service

 European HPC-facilities at the top of an HPC provisioning pyramid

Tier-0: 6 European Centres for Petaflop

Tier-1: National Centres

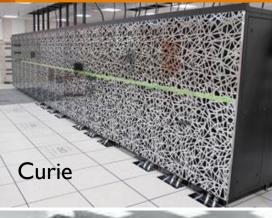
Tier-2: Regional/University Centres

Creation of a European HPC ecosystem

- Scientific and industrial user communities
- HPC service providers on all tiers
- Grid Infrastructures
- The European HPC hard- and software industry

Status and Achievements

- PRACE RI established as an international non-profit association (AISBL) in Brussels on April 23, 2010
 - 24 member states (and associated countries) involved
 - 400 Mio € from France, Germany, Italy, Spain for 2010-2015
 - 70+ Mio € from EC for preparatory + implementation phase projects
 - + membership fees



IBM BlueGene/P (FZJ)

PARTNERSHIP FOR ADVANCED COMPUTING IN EUROPE

Mare Nostrum

PARTNERSHIP FOR ADVANCED COMPUTING IN EUROPE

Top 500 - June 2012

- Rmax and Rpeak values are in TFlops
- Power data in KW for entire system

Rai	nk	Site	Computer/Year Vendor	Cores	R _{max}	R _{peak}	Power
	1	DOE/NNSA/LLNL, United States	Sequoia - BlueGene/Q, IBM	1572864	16324.75	20132.66	7890.0
	2	RIKEN Advanced Institute for Computational Science (AICS), Japan	K computer, SPARC64 Fujitsu	705024	10510.00	11280.38	12659.9
	3	DOE/SC/Argonne National Laboratory, United States	Mira - BlueGene/Q, IBM	786432	8162.38	10066.33	3945.0
	4	Leibniz Rechenzentrum, Germany	SuperMUC - iDataPlex IBM	147456	2897.00	3185.05	3422.7
	5	National Supercomputing Center in Tianjin, China	Tianhe-1A - NUDT	186368	2566.00	4701.00	4040.0
	6	DOE/SC/Oak Ridge National Laboratory, United States	Jaguar - Cray XK6, Cray Inc.	298592	1941.00	2627.61	5142.0
	7	CINECA, Italy	Fermi - BlueGene/Q, IBM	163840	1725.49	2097.15	821.9
	8	Forschungszentrum Juelich (FZJ), Germany	JuQUEEN - BlueGene/Q, IBM	131072	1380.39	1677.72	657.5
	9	CEA/TGCC-GENCI, France	Curie thin nodes - Bull	77184	1359.00	1667.17	2251.0
	10	National Supercomputing Centre in Shenzhen (NSCS), China	Nebulae - Dawning	120640	1271.00	2984.30	2580.0

European in TOP 10

Commitment: Provision capacity and access

- Binding commitments by Germany, France, Italy, Spain
 - 100 Mio €over 5 years in terms of cycles
 - Contribution accounted as TCO (Total Cost of Ownership)
- Access strictly by peer review at a European level
 - Early access call (April/May) 5 months before allocation of resources 2010
 - Test / evaluation access
 - Project access –for a specific project, grant period ~ 1 year
 - Programme access –resources managed by a community
 - Free-of-charge for European scientific communities and for industries in case of open R&D

Detail of TCO calculation

- Investment costs taking into account the expected lifespan of
 - supercomputers, including installation costs;
 - related Information Technology ("IT") equipment required for the operation (storage system, back-up and internal computer centre networks);
 - buildings;
 - technical facilities, including cooling, power supply
- Maintenance of the supercomputers and related IT equipment and software licenses, including vendor support for hardware and software;
- Maintenance of the buildings and technical facilities;
- Electricity charge, including the depreciation cost of the power line and main substation if needed;
- The staff, including management, computer centre operation, building and technical infrastructure support;
- Changes and upgrades that might be required during the first five years

Precision on PRACE costs items

- PRACE manages the in-kind contribution of each hosting member (100 M€ over 5 years)
- PRACE's contributions are mostly forecasts
- Resources provided by PRACE are operated by national centers
- Only a pourcentage of each computing system is open to PRACE for access
- A center can operate other computers than PRACE machines in the same building
- PRACE itself does not manage people in centers

PRACE provides a mutualisation of systems to build world class computer services to the key scientific and industrial communities in Europe

but PRACE does not manage directly the operational costs

Cost calculation: tier-0 means scaling-up

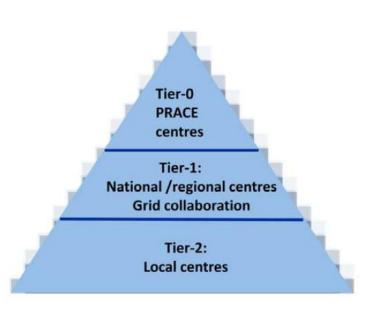
- The initial cost of the computer systems is higher
- The infrastructures have to be adapted
 - Securitised buildings
 - New computer rooms
 - Specific cooling systems
 - Specific electrical infrastructures
 - Powerful connectivities

- Depreciation costs are higher
- and run over different periods

- 3 to 5 years for computers
- ~25 years for buildings

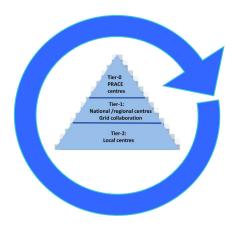
Mutualisation is the interest of PRACE

PRACE RI is operational and ramping up rapidly 5 calls already ended


Past project access calls for proposals (2 calls/year)

Call	Requested Hours (million core hours)	Requested Projects	Awarded Hours (million core hours)	Awarded projects				
Early Access	1870	68	324	10				
1 st	2900	59	362	9				
2nd	1250	47	398	17				
3rd	1700	53	721	24				
total	7720	227	1805	60				
= 30,1 million core hours/proposal								

Consequences to e-fiscal study


- To detail the costs
 - Total cost, occupancy costs
 - Maintenance items
 - services

- To classify the centers answering the questionnaire in the pyramid
- To detail the usages in those centers
 - national vs european
 - Academic vs industrial
 - Use or service provider
- ... and services offered
 - Computing, pre-post treatment, visualisation
- To avoid the comparison HPC and cloud
- To detail the needs and types of users :
 - infrastructure for research and private providers have not comparable costs

Sustainability: matters to consider

- Strategy and missions: at european level / national level
- To make a coherent ecosystem from Tier 2 to Tier 0
- To build up a business model over the whole life cycle
 - Construction
 - Maintenance / upgrades
 - Operation
 - Occupancy
- To have a coherent development of services for research
- To have a coherent development of technical matters, soft and hardwares, academic training, staff management
- To coordinate the access
- To find the best performance indicators
 - For access, for innovation
 - Metrics of success, return on investment, quality level

How to tackle those issues in e-Fiscal?

PARTNERSHIP
FOR ADVANCED COMPUTING
IN EUROPE

Questions?

Thank you